104 research outputs found

    Model predictive control of smart microgrids

    Get PDF

    A Model Predictive Power Control Method for PV and Energy Storage Systems with Voltage Support Capability

    Get PDF

    A Model Predictive Control for Renewable Energy Based AC Microgrids without Any PID Regulators

    Get PDF

    Virtual Flux Droop Method – A New Control Strategy of Inverters in Microgrids

    Get PDF

    A new virtual-flux-vector based droop control strategy for parallel connected inverters in microgrids

    Get PDF

    A new hybrid cascaded switched-capacitor reduced switch multilevel inverter for renewable sources and domestic loads

    Get PDF
    This multilevel inverter type summarizes an output voltage of medium voltage based on a series connection of power cells employing standard configurations of low-voltage components. The main problems of cascaded switched-capacitor multilevel inverters (CSCMLIs) are the harmful reverse flowing current of inductive loads, the large number of switches, and the surge current of the capacitors. As the number of switches increases, the reliability of the inverter decreases. To address these issues, a new CSCMLI is proposed using two modules containing asymmetric DC sources to generate 13 levels. The main novelty of the proposed configuration is the reduction of the number of switches while increasing the maximum output voltage. Despite the many similarities, the presented topology differs from similar topologies. Compared to similar structures, the direction of some switches is reversed, leading to a change in the direction of current flow. By incorporating the lowest number of semiconductors, it was demonstrated that the proposed inverter has the lowest cost function among similar inverters. The role of switched-capacitor inrush current in the selection of switch, diode, and DC source for inverter operation in medium and high voltage applications is presented. The inverter performance to supply the inductive loads is clarified. Comparison of the simulation and experimental results validates the effectiveness of the proposed inverter topology, showing promising potentials in photovoltaic, buildings, and domestic applications. A video demonstrating the experimental test, and all manufacturing data are attached. © 2013 IEEE

    A fault-tolerant cascaded switched-capacitor multilevel inverter for domestic applications in smart grids

    Get PDF
    Cascaded multilevel inverters (MLIs) generate an output voltage using series-connected power modules that employ standard configurations of low-voltage components. Each module may employ one or more switched capacitors to double or quadruple its input voltage. The higher number of switched capacitors and semiconductor switches in MLIs compared to conventional two-level inverters has led to concerns about overall system reliability. A fault-tolerant design can mitigate this reliability issue. If one part of the system fails, the MLI can continue its planned operation at a reduced level rather than the entire system failing, which makes the fault tolerance of the MLI particularly important. In this paper, a novel fault location technique is presented that leads to a significant reduction in fault location detection time based on the reliability priority of the components of the proposed fault-tolerant switched capacitor cascaded MLI (CSCMLI). The main contribution of this paper is to reduce the number of MLI switches under fault conditions while operating at lower levels. The fault-tolerant inverter requires fewer switches at higher reliability, and the comparison with similar MLIs shows a faster dynamic response of fault detection and reduced fault location detection time. The experimental results confirm the effectiveness of the presented methods applied in the CSCMLI. Also, all experimental data including processor code, schematic, PCB, and video of CSCMLI operation are attached. © 2013 IEEE
    corecore